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In 1967, infants and toddlers immunized with a formalin-inactivated vaccine against respiratory syncytial virus (RSV) experi-
enced an enhanced form of RSV disease characterized by high fever, bronchopneumonia, and wheezing when they became in-
fected with wild-type virus in the community. Hospitalizations were frequent, and two immunized toddlers died upon infection
with wild-type RSV. The enhanced disease was initially characterized as a “peribronchiolar monocytic infiltration with some
excess in eosinophils.” Decades of research defined enhanced RSV disease (ERD) as the result of immunization with antigens not
processed in the cytoplasm, resulting in a nonprotective antibody response and CD4� T helper priming in the absence of cyto-
toxic T lymphocytes. This response to vaccination led to a pathogenic Th2 memory response with eosinophil and immune com-
plex deposition in the lungs after RSV infection. In recent years, the field of RSV experienced significant changes. Numerous vac-
cine candidates with novel designs and formulations are approaching clinical trials, defying our previous understanding of
favorable parameters for ERD. This review provides a succinct analysis of these parameters and explores criteria for assessing the
risk of ERD in new vaccine candidates.

Respiratory syncytial virus (RSV) is the leading respiratory
cause of hospitalization in infants and young children in the

United States and in the world (1, 2). Most severe infections occur
in young infants, with the peak incidence of lower respiratory tract
illness (LRTI) occurring between 2 and 4 months of age (3–5). In
the United States, hospitalization rates have risen during the last
decades (6), and while premature babies and infants with chronic
lung disease and/or congenital heart disease are at increased risk
for severe presentations, the majority of hospitalizations occur in
previously healthy infants. Recent estimates of global mortality
suggest that between 66,000 and 234,000 infants and young chil-
dren die every year due to RSV (1, 2). Ninety-nine percent of
deaths occur in the developing world (2). A significant proportion
of these fatalities are thought to occur in the community. The need
for preventive interventions against the virus is indisputable.

The virus. RSV is a member of the pneumovirus genus of the
family Paramyxoviridae. The virus is a negative-sense RNA virus
with a nonsegmented encapsidated genome and a lipid envelope
(7). The envelope is a host plasma membrane-derived lipid bilayer
containing three virally encoded transmembrane glycoproteins:
the fusion (F) protein, the attachment (G) protein, and the small
hydrophobic (SH) protein. RSV F is the main neutralizing anti-
gen, highly conserved and essential for virus viability (7). The
secondary protective antigen eliciting neutralizing antibodies is
the RSV G protein. Both neutralizing antigens are the main can-
didates for novel vaccines and targets for monoclonal antibodies.

A new scenario. The world of RSV vaccines is experiencing
important changes. In recent years, epidemiological studies high-
lighted the burden of RSV disease worldwide (2, 8), stressing the
public health need for vaccine development against the pathogen.
Strategies under evaluation in human subjects to prevent severe
RSV LRTI include immunization of pregnant women and passive
prophylaxis with long-lived monoclonal antibodies and inocula-
tion of live attenuated RSV vaccines in young infants (9–11). Ma-
ternal immunization aims to elicit high levels of protective anti-
body in pregnant women, fostering transplacentally acquired

antibody-mediated protection in infants during the first months
of life (12–14). Passive prophylaxis with long-lived monoclonal
antibodies against neutralizing epitopes in RSV and immuniza-
tion with recombinant live, attenuated RSV vaccines target infants
directly (11).

In addition, a variety of novel approaches to vaccination have
emerged. Replication-defective gene-based single-cycle vectors
(15, 16), subunit vaccines adjuvanted with various Toll-like recep-
tor (TLR) agonists (17), viruslike particles (VLPs) with protective
antigens (18–20), and new formulations with the prefusion con-
formation of RSV F (21–25) defy our traditional understanding of
replicating and nonreplicating vaccines, posing new questions for
the field and for human studies. This challenge is particularly sig-
nificant for RSV because a vaccine designed to protect infants and
toddlers against RSV in the 1960s primed for a severe form of
respiratory illness upon RSV infection, known as enhanced RSV
disease (ERD). Each of these novel formulations may present in-
dividual characteristics that theoretically affect the risk for ERD.

Brief history of enhanced RSV disease. In 1966, a formalin-
inactivated vaccine against RSV (FIRSV) was administered to in-
fants and children in four studies in the United States (26–29). The
immunized children were exposed to RSV in the community, and
those children who were seronegative for the virus before vacci-
nation experienced a significant increase in the frequency and
severity of RSV LRTI. This enhanced form of RSV disease pre-
sented with fever, wheezing, and bronchopneumonia and led to
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frequent hospitalizations (80% in FIRSV recipients versus 5% in
controls among RSV-infected children in one study) (26). In fact,
two immunized infants died as toddlers as a consequence of sub-
sequent RSV infection (26).

In the last 3 decades, much effort has been devoted to clarifying
the pathogenesis of ERD. For many years, the consensus was that
nothing but live, attenuated vaccines against RSV would ever be
used to immunize infants. Therefore, the characterization of ERD
phenotypes was of academic interest but had limited regulatory
implications. The need for identifying clear biomarkers of disease
enhancement is now particularly important, because novel vac-
cine formulations challenging our old safety parameters are
emerging and may be ready for human studies in the near future.
While not all candidate vaccines present similar risks of eliciting
ERD, identifying safety parameters for the evaluation of certain
new formulations will be critical. Importantly, these evaluations
will have to be conducted in animal models, because ERD never
occurred in children who were seropositive for RSV before immu-
nization with FIRSV (26–29). Therefore, only animal models may
be able to identify vaccines that prime for ERD before they reach
seronegative infants (26–29).

Numerous cell types, cytokines, and chemokines have been
reported to promote or mitigate ERD in the last decades (30–40).
The studies used a variety of animal models, immunogens, and
immunization strategies (31, 32, 41–51). We have chosen to focus
on the most widely accepted and arguably best-studied character-
istics of ERD to provide a concise and critical review of disease
pathogenesis and discuss the potential value of selected biomark-
ers in the evaluation of novel RSV vaccine candidates.

Eosinophils in ERD. Autopsy material from both toddlers
killed by ERD showed bronchopneumonia with atelectases and
pneumothoraces. The pulmonary histopathology was reported in
the literature as a “peribronchiolar monocytic infiltration with
some excess in eosinophils” (26), but rereview of the autopsy re-

ports (42) revealed a pulmonary neutrophilia with abundant mac-
rophages and lymphocytes and excess eosinophils (Fig. 1). Given
the overwhelming predominance of neutrophils and mononu-
clear cells in ERD, the reason why these cells were ignored in the
original manuscript is unclear (26). Perhaps the postmortem re-
covery in culture of Klebsiella and Escherichia coli bacteria from
autopsy specimens of both children (26) raised suspicion that a
bacterial superinfection had triggered the pulmonary neutro-
philia. However, high RSV titers were recovered from the lungs of
the affected children (26), the lung histopathology in both cases
was not entirely consistent with bacterial pneumonia (52, 53), and
recovery of Gram-negative bacilli from the respiratory tracts of ill,
hospitalized patients is exceedingly common (54–56).

The original report emphasizing eosinophils in the lung pa-
thology made these cells a critical endpoint of ERD models. In fact,
FIRSV was often replaced in ERD models by vaccines with signif-
icant differences in design and properties, namely, vaccinia virus
expressing RSV G (vvG) (31, 32, 49–51). These alternative vac-
cines were chosen based on their ability to promote eosinophilia
upon RSV challenge (35, 38–40, 57–90). Notably, more than half
of all mouse studies of ERD pathogenesis used vvG immunization
instead of FIRSV. And while vvG primed for an undesirable pul-
monary eosinophilia after challenge, this replicating immunogen
differed significantly from FIRSV. Consequently, its disease-
priming mechanisms were not necessarily those of inactivated
vaccines leading to ERD. Moreover, the strong emphasis on lung
eosinophilia in mouse models of ERD often translated into con-
sidering the presence of other inflammatory cells irrelevant (26–
32, 35, 45, 49–51, 91–99). This is paradoxical, as eosinophils were
not always the dominant infiltrating cells even in Th2-biased
mouse models of ERD (31, 32, 34, 38–40, 49–51, 57–90, 100), and
they are absent in cotton rats and several cattle models of en-
hanced illness (42, 43). Recently, new evidence revealed that eo-
sinophils do not play a critical role in ERD pathogenesis (37).

FIG 1 Photomicrograph of lung section from BALB/c mouse with enhanced RSV disease. Hematoxylin and periodic acid-Schiff stain shows peribronchiolar,
perialveolar, and perivascular inflammation with abundant mucus production.
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Their role in illness, like that of neutrophils, remains unclear.
However, the presence of eosinophils in lung sections of immu-
nized and challenged BALB/c mice may serve as a warning sign
and prompt caution against any vaccine candidate targeting
RSV. Conversely, the absence of eosinophils in other disease
models should not be interpreted as solid reassurance against
the risk of ERD.

T helper bias in ERD. Twenty-four years ago, the first evalua-
tion of ERD pathogenesis showed increased production of in-
terleukin 4 (IL-4) in lungs of affected BALB/c mice by using
Northern blot analyses (30). Subsequent depletion of CD4� T
lymphocytes and codepletion of IL-4 and IL-10 down-modulated
ERD lung pathology, suggesting that the disease was due to an
exacerbated Th2 response (34, 35). These observations were fur-
ther supported by reports of increased numbers of eosinophils
and CD4� (but not CD8�) T cells in mice with ERD and high
levels of both IL-5 and IL-13 type 2 cytokines in murine models
(38). Finally, recent studies in BALB/c mice confirmed a critical
role for Th2 bias (but not eosinophils) in airway hyperreactivity
and mucus hypersecretion (37). Formaldehyde, used for virus in-
activation in FIRSV, may have contributed to Th2 polarization
during ERD by generating carbonyl groups on viral antigens (96).

The activation and/or suppression of other T lymphocyte pop-
ulations may contribute to ERD. Recent work associated ERD
with marked suppression of T regulatory cell (Treg) activity (an
observation that aligns with earlier evidence of modulation by
IL-10 [35]), exacerbating the Th2 bias in recipients of inactivated
RSV vaccines (36). Th1 responses may also be suppressed during
acute illness (101), while exacerbated Th17 responses may associ-
ate with lung neutrophilia and synergize with Th2 cytokines (102–
104).

In summary, ERD pathogenesis is associated with Th2 polar-
ization of the immune response in the lungs after RSV challenge.
RSV vaccines eliciting high levels of IL-4 and/or IL-13 in animal
models (compared to the levels in control animals protected by
prior wild-type [wt] RSV infection) should be considered prone to
priming for ERD and excluded as potential candidates for infant
immunization.

Cytotoxic T lymphocytes in ERD. A critical element in ERD
pathogenesis is the inability of FIRSV and other vaccine antigens
not processed in the cytoplasm to elicit cytotoxic T lymphocytes
(CTL) in immunized subjects (39). The absence of a CTL response
during immunization is associated with virus replication in the
lungs and Th2 polarization of the anamnestic CD4� T lympho-
cyte response during RSV infection (38, 39, 92). Correcting this
deficit led to Th1 protective responses, abrogating the pathogenic
phenotype (39). These manifestations were first evidenced using
vvG immunization in mice as a surrogate for FIRSV (31, 32, 49–
51). In summary, the absence of CTLs and nonprotective antibod-
ies (discussed below) allows RSV replication after challenge and,
in the context of primed CD4� T lymphocytes, sets the stage for an
aberrant anamnestic response that results in ERD.

Antibodies in ERD. Two mysterious observations defied our
understanding of ERD susceptibility for decades: ERD never oc-
curred in those infants who were seropositive for RSV at the time
of FIRSV administration, and no child ever experienced ERD
twice (26). The answer to these two enigmas also explains why
FIRSV elicited antibodies that failed to protect against RSV infec-
tion (26). The mechanism responsible for the absence of a protec-

tive antibody response against RSV remained unclear for decades,
hampering the development of new vaccines against the virus.

The nonprotective antibody response elicited by RSV vaccines
encoding antigens not processed in the cytoplasm is the result of
lack of affinity maturation in B cells (33). This low-avidity
response to FIRSV stems from poor TLR activation during
immunization and, upon RSV infection, triggers immune complex
formation and complement activation, potentiating Th2-mediated
bronchoconstriction, pneumonia, and mucus production through
anaphylotoxin C3a (33, 105).

The importance of antibody avidity for protection against re-
spiratory viruses is also observed in responses against measles vi-
rus (MV) (106, 107). A formalin-inactivated vaccine against MV
(FIMV) also elicited low-avidity, nonprotective antibodies fol-
lowed by an atypical and severe illness (i.e., atypical measles) in
individuals exposed to wild-type virus (106). In the case of MV,
low-avidity antibody did not neutralize viral infection through the
CD150 high-affinity MV receptor and—as observed in ERD
(105)—promoted immune complex-mediated illness (106). In
RSV, differences in affinity between the antibodies elicited by
FIRSV and viral attachment proteins versus these proteins and
their receptors may explain the nonprotective responses and
pathogenic immune complexes associated with disease enhance-
ment (108–110).

Affinity maturation also explains why children who were sero-
positive for RSV before immunization with FIRSV never devel-
oped ERD. Preexisting high-avidity antibody against wt RSV
probably outcompeted low-avidity B cell clones elicited by FIRSV,
eliminating pathogenic B cell priming against the virus. After
ERD, B cells elicited by RSV infection also outcompeted preexis-
tent pathogenic B cells and reestablished a healthy response
against subsequent reinfections. In fact, a similar process was in-
advertently elicited by corrective subcutaneous inoculation of live,
attenuated MV vaccine in individuals immunized with FIMV in
the 1960s. Live MV vaccine recipients developed localized atypical
measles at the injection site (111, 112) but eliminated pathogenic
B cell clones, preventing future systemic exacerbations. Whether
other factors in RSV protective antigens, such as the RSV F pre- or
postfusion conformation in vaccine candidates (23, 25), also con-
tribute to antibody quality and disease enhancement requires fur-
ther study.

In summary, vaccines eliciting nonneutralizing antibody
against RSV in seronegative individuals may prime for ERD and
should not be administered to infants (at least until effective non-
neutralizing mechanisms of antibody-mediated protection are
demonstrated).

Current vaccine candidates. Fortunately, concerns for ERD
are minimal for immunization of pregnant women, administra-
tion of monoclonal antibodies to susceptible populations, and
infant intranasal immunization with live, attenuated RSV vac-
cines (11, 113, 114). However, novel RSV vaccine candidates in
preclinical and clinical development potentially targeted to naive
infants confront the field with new challenges. Understanding
ERD pathogenesis and the mechanisms of illness associated with
candidate biomarkers is critical to evaluate these immunogens in
animal models. Some of these candidates, using antigens not pro-
cessed in the cytoplasm, may present excessive risks for further
testing. Others will demand careful evaluation in small and large
animal models. Cotton rats have proven useful in characterizing
ERD based on lung histopathology, particularly in studies focus-
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ing on alveolitis (42), RSV replication, neutrophilia, and inflam-
mation. Alveolitis in rodents replicates findings in lung sections
from children with ERD and may serve as an indicator of illness
(42). Cattle ERD models have certain limitations but may also
provide useful information (43). Bovine RSV is related to human
RSV in numerous aspects, including epidemiology and pathology
(115–117). The clinical forms mimic those observed in humans
(ranging from subclinical to severe bronchiolitis and pneumo-
nia). Furthermore, most affected animals are younger than 6
months of age (115, 117). However, while some studies reported
complete protection using the inactivated vaccine (118, 119), oth-
ers described nonprotective responses (120, 121) and, in other
cases, partial reproduction of the human ERD phenotype (43, 122,
123).

Conclusion. To summarize, in the 1960s, ERD was a severe
complication of infant immunization against RSV using vaccine
antigens not processed in the cytoplasm. The illness was charac-
terized by failure to elicit protective antibody and CTLs after
immunization, followed by Th2 polarization, an excess of lung
eosinophils (accompanying robust lung neutrophilia and
mononuclear cell infiltration), and pulmonary immune complex
deposition after wt RSV infection.
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