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SUMMARY
Viruses are a constant threat to global health as highlighted by the current COVID-19 pandemic. Currently,
lack of data underlying how the human host interacts with viruses, including the SARS-CoV-2 virus, limits
effective therapeutic intervention. We introduce Viral-Track, a computational method that globally scans un-
mapped single-cell RNA sequencing (scRNA-seq) data for the presence of viral RNA, enabling transcriptional
cell sorting of infected versus bystander cells. We demonstrate the sensitivity and specificity of Viral-Track to
systematically detect viruses from multiple models of infection, including hepatitis B virus, in an unsuper-
vised manner. Applying Viral-Track to bronchoalveloar-lavage samples from severe and mild COVID-19 pa-
tients reveals a dramatic impact of the virus on the immune system of severe patients compared to mild
cases. Viral-Track detects an unexpected co-infection of the human metapneumovirus, present mainly in
monocytes perturbed in type-I interferon (IFN)-signaling. Viral-Track provides a robust technology for dis-
secting the mechanisms of viral-infection and pathology.
INTRODUCTION

The development of efficient vaccines against viral pathogens is

considered one of the biggest achievements of modern

medicineandhassignificantlycontributed to the increase in lifeex-

pectancy worldwide. However, no vaccines exist for many life-

threatening viruses such as HIV (Burton, 2019), Zika virus (Pierson

andDiamond, 2018), or hepatitis C virus (HCV) (Bailey et al., 2019).

Additionally, efficient broad-spectrum antiviral drugs are still

missing, making infectious diseases a significant challenge for

modern health systems. Viruses can also trigger or fuel non-infec-

tious diseases such as cancer (Young and Rickinson, 2004) and

are suspected to contribute to various other chronic diseases

such as Alzheimer disease (Itzhaki, 2018) and various auto-im-

mune disorders (Münz et al., 2009). The recent emergence of high-

ly pathogenic viruses such as the Ebola virus and the emerging

SARS-CoV-2 pandemic recalls the constant threat that viruses

represent to global health. So far, the SARS-CoV-2 pandemic

has caused a global financial and social catastrophe and is ex-

pected to make a significant long-lasting impact on human health

(Zhu et al., 2020). Despite intensive research efforts, little is known
thus far regarding the interaction of the SARS-CoV-2 viruswith the

human host and, as a consequence, no efficient treatment has

been designed so far (Chen et al., 2020). Moreover, only few ther-

apeutic targets have been identified, highlighting the urgency to

developadditional strategies todissect the virus-host interactions.

Single-cell RNA sequencing (scRNA-seq) is an emerging tech-

nology that has been extensively used to study several complex

diseases, including cancer (Li et al., 2019), neurodegeneration

(Keren-Shaul et al., 2017), and auto-immune (Zhang et al., 2019)

andmetabolic diseases (Jaitin et al., 2019), providing new insights

and revealing new therapeutic targets and strategies (Yofe et al.,

2020). In the context of infectious diseases, scRNA-seq studies

identified the underlying cells and pathways interacting with

various pathogens (Drayman et al., 2019; Shnayder et al., 2018;

Steuerman et al., 2018; Zanini et al., 2018). During the immune

response to a pathogen, a limited number of antigen-positive or in-

fected cells initiate and modulate the host immune response

(Blecher-Gonen et al., 2019), while most of the tissue response is

propagated through cytokines, such as type I interferon (IFN)

signaling, to bystander, uninfected cells. It is therefore essential

to develop new analytical tools to identify the rare infected cells
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in order to better understand complex host-virus interactions un-

derlying these pathologies. Multiple experimental tools have

been developed over the years to track virus-infected cells in vivo,

characterize the cellular state of the infected cells, anddifferentiate

them from their bystander neighbors. These include fluorescently

labeled pathogens or pathogens expressing fluorescent proteins

(De Baets et al., 2015; Blecher-Gonen et al., 2019), as well as

reportermice (Lienenklauset al., 2009).However, in the caseof hu-

manclinicalsamples, these toolsare limited,making thepathogen-

infected cells and viral reservoir cell types hard to detect.

Viruses exploit their host cells to first express viral genes, opti-

mize the cellular environment, and then fully activate the viral repli-

cation program. Because scRNA-seq technologies rely on polya-

denylated RNA isolation and amplification, current scRNA-seq

methods can, in theory, detect these viral RNA programs and

therefore enable accurate identification of the bona fide infected

cells and their unique properties at single-cell resolution. While

such an approach has already been used to study both in vitro

(Drayman et al., 2019; Shnayder et al., 2018) and in vivo infection

models (Steuerman et al., 2018), no general computational frame-

work has been developed to detect viruses and analyze host-viral

maps in clinical samples. Here, we present a new computational

tool, called Viral-Track, that is designed to systematically scan

for viral RNA inscRNA-seqdataofphysiological viral infectionsus-

ing a direct mapping strategy. Viral-Track performs comprehen-

sive mapping of scRNA-seq data onto a large database of known

viral genomes, providing precise annotation of the cell types asso-

ciated with viral infections. Integrating these data with the host

transcriptome enables transcriptional sorting and differential

profilingof theviral-infectedcells compared tobystandercells.Us-

ing a new statistical approach for differential gene expression be-

tween infected and bystander cells, we are able to recover virus-

induced programs and reveal key host factors required for viral

replication. Viral-Track is able to annotate the viral program with

high accuracy and sensitivity, aswe demonstrate in several in vivo

mouse models of infection, as well as human samples of hepatitis

B virus (HBV) infection. Applying Viral-Track on bronchoalveolar

lavage (BAL) samples from moderate and severe COVID-19 pa-

tients, we reveal the infection landscape of SARS-CoV-2 and its

interaction with the host tissue. Our analysis shows a dramatic

impact of the SARS-CoV-2 virus on the immune system of severe

patients, compared tomildcases, including replacement of the tis-

sue-resident alveolar macrophages with recruited inflammatory

monocytes, neutrophils, and macrophages and an altered CD8+

T cell cytotoxic response.We find thatSARS-CoV-2mainly infects

theepithelial andmacrophagesubsets. Inaddition, Viral-Trackde-

tects an unexpected co-infection of the humanmetapneumovirus

in one of the severe patients. This study establishes Viral-Track as

a broadly applicable tool for dissecting mechanisms of viral infec-

tions, including identification of the cellular and molecular signa-

tures involved in virus-induced pathologies.

RESULTS

Viral-Track: An Unsupervised Pipeline for
Characterization of Viral Infections in scRNA-Seq Data
All scRNA-seq computational packages implement a pipeline that

initially aligns the sequenced reads to the expressed part of a
1476 Cell 181, 1475–1488, June 25, 2020
reference host genome of the relevant profiled organism. Irrele-

vant reads, representing other organisms, primers, adaptors, tem-

plate switching oligonucleotides, and other contaminants are then

commonly discarded. We reasoned that during infection, and

likely many other pathological processes, these reads can poten-

tially carry valuable information about viral RNA that is discarded

in this filtering step. In order to efficiently detect viral reads from

raw scRNA-seq data in an unsupervised manner, we developed

Viral-Track, an R-based computational pipeline (Figure 1A;

STAR Methods). Briefly, Viral-Track relies on the STAR aligner

(Dobin et al., 2013) to map the reads of scRNA-seq data to both

the host reference genome and an extensive list of high-quality

viral genomes (Stano et al., 2016). Because viral reads are highly

repetitive and generate substantial sequencing artifacts, the viral

genomes identified in Viral-Track with a sufficient number ofmap-

ped reads are then filtered, based on readmapping quality, nucle-

otide composition, sequence complexity, and genome coverage,

to limit the occurrence of false-positives (STAR Methods). Due to

the lack of high-quality viral genome annotations, Viral-Track in-

cludes de novo transcriptome assembly of the identified viruses

using StringTie (Pertea et al., 2015). Finally, viral reads are demul-

tiplexed, quantified using unique molecular identifiers (UMI), and

assigned to unique viral transcripts and cells (Figures 1A and

S1A). The Viral-Track algorithm has been designed to robustly

handle various types of scRNA-seq datasets, as illustrated below,

and is publicly accessible at https://github.com/PierreBSC/

Viral-Track.

In order to evaluate the specificity and sensitivity of Viral-

Track, we benchmarked Viral-Track on several scRNA-seq

datasets (Table S1). These datasets include a large number of

experiments we conducted, as well as published studies, that

span several tissues (lung, spleen, liver, and lymph node) and a

wide range of viruses: influenza A, lymphocytic choriomeningitis

virus (LCMV), vesicular stomatitis virus (VSV), herpes simplex vi-

rus 1 (HSV-1), human immunodeficiency virus (HIV), and HBV.

We first evaluated mouse lungs infected in vivo by influenza A vi-

rus and sequenced using MARS-seq2.0 (Keren-Shaul et al.,

2019; Steuerman et al., 2018). Viral-Track analysis specifically

detected the 8 distinct influenza A viral segments (NC_002016

to NC_002023 Refseq nucleotide sequences) from the specific

infecting strain (H1N1 Puerto Rico 8 strain) (Figure 1B). We per-

formed transcriptome assembly to test the feasibility of recon-

structing the viral transcriptome from 30-enriched scRNA-seq

data. The results were highly coherent with the current knowl-

edge of influenza A transcriptome, exemplified by Viral-Track’s

ability to identify documented spliced transcript structures with

single-nucleotide precision. For instance, we identified the exact

location of the key splicing site on segment 7 that gives rise toM2

transcript and links nucleotides 51 and 740 (Dubois et al., 2014)

(Figure 1C). Quantification of the number of viral reads across

different experimental conditions was consistent with current

knowledge of the disease, with lung stomal cells of non-immune

lineages (CD45�) exhibiting a significantly higher viral load

compared to immune cells (CD45+) (p = 0.039, two-tailed

Welch’s t test) (Figure 1D).

As inbred mice lack the influenza-specific restriction factor

Mx1, influenza A infection is extremely virulent in inbred mice

(Haller et al., 1980). Moreover, all influenza A mRNA are capped

https://github.com/PierreBSC/Viral-Track
https://github.com/PierreBSC/Viral-Track
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and polyadenylated, making them an optimal substrate for

scRNA-seq isolation and amplification protocols. We therefore

evaluated the sensitivity and specificity of Viral-Track in a more

challenging dataset. In this model, photoactivatable-GFP (PA-

GFP) mice were infected with LCMV (Armstrong acute strain),

a virus lacking strong poly(A) mRNA signals (Burrell et al.,

2017), via injection to the footpad. 72 h post-infection, CD45+

splenic immune cells from different spatial niches (T zone, B

zone, marginal zone, and total spleen) were profiled using the

NICHE-seq technology (Medaglia et al., 2017). Even though

the LCMV viral mRNAs are not polyadenylated, we detected

mRNA molecules that converted to cDNA through priming of

the MARS-seq oligo(dt) RT primer, and Viral-Track successfully

identified the two viral segments (LCMV segment L

[NC_004291] and S [NC_004294]) (Figure S1B), albeit the num-

ber of detected reads was an order of magnitude lower than

the number observed in influenza A infection (Figure 1E). We de-

tected viral reads in samples from themarginal zone, B zone, and

the total spleen, but not in T zone samples, and marginal zone

samples exhibited significantly higher viral load compared to B

zone and total spleen samples (Figure 1E; p = 0.0067 and

0.0083 respectively, two-tailed Welch’s t test). This observation

is in line with the biology of LCMV, which primarily infects mac-

rophages and lymphocytes from the marginal zone of the spleen

(Müller et al., 2002).

We next evaluated whether Viral-Track is sensitive to barcode

swapping during Illumina-based scRNA-seq (Griffiths et al.,

2018), which, in the case of viral RNA detection, can lead to the

false assignment of viral reads to uninfected cells. To this end,

we infected mice with one of two different viruses, LCMV and

VSV, and performed MARS-seq2.0 on CD45+CD19�CD3� non-

B/T cells from the auricular draining lymph node 1 day after infec-

tion (STAR Methods). All samples were sequenced concurrently

to test for cross-sample viral readcontamination. For both viruses,

Viral-Track was able to identify the correct viral segments (Figures

S1C and S1D), with no cross-contamination, evident by the

absence of VSV reads detected in the LCMV-infected cells and

vice versa (Figure S1E). We further generalized Viral-Track for
Figure 1. Viral-Track Retrieves Viral Reads in a Variety of Tissues, Vira

(A) Schematics of the Viral-Track approach. Single-cell sequencing data of cells fr

Viral-Track. Viral-Track maps the sequenced reads to both the host reference gen

host transcriptional landscape.

(B) Results of Viral-Track analysis on scRNA-seq data from influenza APR8-infecte

the sequences (measured by entropy, i.e., how repetitive are the mapped sequen

dots correspond to viral segments of the influenza A PR8 strain and yellow dots to

than 50 mapped reads are plotted.

(C) Coverage plot of the influenza A segment NC_002016 (influenza A PR8 segme

splicing site position.

(D) Quantification of the number of reads assigned to influenza viral segments acr

well plate). Two-tailed Welch’s t test was used to compare viral load betwen CD

(E) Quantification of the number of reads assigned to LCMV viral segments in the d

well plate). Two-tailedWelch’s t test was used to compare viral load between cells

0.0067 and 0.0083 respectively).

(F) Result of Viral-Track analysis on scRNA-seq data from a HBV patient. For ea

percentage of the segment that is mapped is plotted. Green dots correspond to

mapped reads are plotted.

(G) Coverage plot of the HBV genome. Locations of the different viral genes from

(H) Enrichment of infected cells across hepatic cell subsets (left panel); red line co

cell in each cell subset (right panel).

See also Figure S1.
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commonly used scRNA-seq technologies and non-RNA viruses.

We applied Viral-Track to scRNA-seq data from a recently publi-

cation of human primary cells infected ex vivowith HSV-1, a linear

double-stranded DNA virus, generated by the Drop-seq platform

(Drayman et al., 2019; Macosko et al., 2015). We found that Viral-

Track detected and identified correctly HSV-1 RNA specifically in

the infected samples but not in the controls (NC_001806 Refseq

nucleotide sequences) (Figures S1F and S1G). Finally, we

analyzed scRNA-seq data of CD4+ T cells infected ex vivo with

HIV-1 (Bradley et al., 2018), generated using the droplet-based

chromium platform (Zheng et al., 2017). Viral-Track successfully

identified HIV as the unique virus present in the infected samples

(Figures S1H and S1I), but detected significant amounts of HIV-1

viral reads in one control samples probably due to ambient

contamination (Yang et al., 2020).

Defining the Host Viral Interactions of HBV Using
Viral-Track
We further tested Viral-Track’s applicability for detecting viral

reads in human clinical samples. For this purpose, we generated

scRNA-seq data from a liver biopsy of an untreated hepatitis B

patient and analyzed the data using Viral-Track. Viral-Track suc-

cessfully identified HBV as the only virus present in the sample

(Figure 1F) with 18,420 reads assigned to the HBV genome

(NC_003977 Refseq sequence). Coverage analysis revealed a

strong peak located at the 50 end of the C gene, encoding for

the main core protein, suggesting that the HBV virus is actively

producing virions (Figure 1G). We then overlaid the viral data

on the host transcriptome to identify infected and bystander

populations. A total of 13,803 cells passed a lenient quality con-

trol, permitting apoptotic signals that may arise from viral infec-

tion. We identified several non-immune cell types (Figure S1J),

including hepatocytes (expressing ALB and APOA2), as well as

hepatocytes showing apoptotic signatures (ALB with high

expression of mitochondrial genes), sinusoidal endothelial cells

(FCN2), and epithelial cells (KRT7). We also observed several

subsets of immune cells such as B cells (MS4A1), plasma cells

(MZB1), conventional dendritic cells 1 (cDC1; XCR1),
l Strains, and Sequencing Platforms

om an infected tissue, containing infected and bystander cells are analyzed by

ome and a database of viral genomes, overlaying infection status on top of the

dmouse lungs. For each viral segment, represented by a dot, the complexity of

ces) and the percentage of the segment that is mapped are plotted. Dark red

segments belonging to other H1N1 influenza strains. Viral segments with more

nt 7), M2 transcript location estimated using StringTie is shown below with the

oss experimental settings. Each dot corresponds to a technical replicate (384-

45� and CD45+ cells (p = 0.039).

ifferent zones of the spleen. Each dot corresponds to a technical replicate (384-

from the infectedmarginal zone to cells from the B zone or the whole speen (p =

ch viral segment, represented by a dot, the entropy of the sequence and the

viral segments that passed quality control. Viral segments with more than 50

NCBI database are depicted at the bottom.

rresponds to an enrichment of one. Distribution of the number of HBV UMIs per
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Figure 2. Viral-Track Identifies Virus-Modified Transcription in Infected Cell Subsets

(A) Distribution of vUMI+ and GFP+ cells across cells types found in the spleen.

(B) Distribution of the Pearson Correlation between GFP+ cells, vUMI+, and bystander (GFP�vUMI�) cells. Two-tailed Kruskal-Wallis test.

(C) Number of differentially expressed genes between bystander and infected cells in MZB cells, monocytes, and macrophages.

(D) Top 10 enriched terms identified by Gene Ontology enrichment analysis.

(E) Mean expression of four top differentially expressed genes in bystander and infected MZB cells.

See also Figure S2.
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plasmacytoid dendritic cells (pDCs) (TCF4), and three different

macrophage subsets (expressing TREM2, CD163, and FCN1,

respectively). We observed a large diversity among the lympho-

cyte compartment with CD8+ T cells (CD8A), Th17 cells (CCR6,

IL23A), gd T cells (TRGC1), activated CD4 T cells (LEF1, OX40),

natural killer (NK) cells (NKG7), and a distinct cluster of activated

CD8+ T cells (CSF2 and TOX2). We analyzed infected cells using

automated thresholding over the viral signal (Figure S1J; STAR

Methods). As expected, hepatocytes and apoptotic hepatocytes

were strongly enriched among the infected cells (Figures 1H and

S1K). Interestingly, we also detected viral reads in non-hepato-

cyte clusters, including two subsets of macrophages (CD163+

and TREM2+ populations, respectively), the cDC1 subset

(XCR1+), as well as endothelial (OIT3+ cells) and epithelial cells

(KRT7+) (Figures 1H and S1K). Infection of non-hepatocyte clus-

ters, although with relatively low viral load, is coherent with
several studies, reporting active infection of macrophages

(Faure-Dupuy et al., 2019).

Together, this extensive list of validations demonstrate that

Viral-Track is a sensitive and accurate method to detect and

identify, in an unsupervised manner, virus strains in diverse

scRNA-seq samples, in different tissues, and at varying viral

types and loads. Importantly, Viral-Track can be applied to hu-

man clinical samples to extract valuable insight into the biology

of the host-virus interactions.

Viral-Track Identifies Infected versus Bystander Cells
and Uncovers Virus-Induced Pathways
To further evaluate the accuracy of Viral-Track against a well-es-

tablished model for tracking infection in single cells, we infected

mice with a GFP-expressing LCMV virus (LCMV-GFP virus) (Med-

aglia et al., 2017).We performedMARS-seq onGFP+ splenocytes
Cell 181, 1475–1488, June 25, 2020 1479
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and total spleen cells 72 h post-infection and analyzed the

sequenced cells (Figures S2A and S2B; STAR Methods). GFP+

cells were enriched for vUMI+ cells compared to total spleen (Fig-

ure S2A). We then calculated whether the cells positive for the

LCMV-GFP signal (GFP+ cells) were similar to the ones desig-

nated by Viral-Track as containing viral UMIs (vUMI+). Following

clustering and annotation, we observed similar proportions of

GFP+ and vUMI+ cells across cell clusters (Figures 2A and S2C;

R = 0.95, p = 9.0 * 10�12), with monocytes, marginal zone B cells

(MZBs), andmacrophages being themajor infected cell types.We

then evaluated the transcriptional signatureswithin these two sets

of cells by computing the Pearson correlation between each pair

of cells. We observed similar distribution of Pearson correlation

within the GFP+ and vUMI+ monocyte cells (Figure 2B) that was

significantly higher (median correlation of 0.65, 0.64, and 0.51,

respectively) than the correlation observed between GFP� vUMI�

bystander monocytes. We conclude that Viral-Track correctly

identifies a homogeneous set of infected cells from in vivo

scRNA-seq samples similar to the one identified by conventional

reporter viruses, even in the more difficult scenario in which viral

transcripts are poorly polyadenylated.

We next evaluated the ability of Viral-Track to detect host fac-

tors associated with virus replication. For this purpose, we devel-

oped a statistical method that detects differentially expressed

genes based on data binarization and complementary log-log

regression (STARMethods; Methods S1). We used this approach

to test for transcriptional differences between bystander and in-

fected cells during spleen LCMV infection across the three main

infected cell types: macrophages, MZB cells, and monocytes.

We observed that MZB cells were the most influenced by the viral

infection, compared to monocytes and macrophages (107, 42,

and 3 genes upregulated, respectively, Z score >3) (Figure 2C).

WeperformedGeneOntology enrichment analysis on the upregu-

lated genes in MZB cells and observed a significant enrichment in

several pathways, including ‘‘chromosome organization,’’ ‘‘DNA

replication,’’ and ‘‘cell cycle,’’ suggesting that LCMV triggers cell

division in MZB cells (Figure 2D). Indeed, LCMV-infected MZB

cells exhibited higher levels of cell cycle-related genes such as

Smc2 (required for chromatin condensation), Cdc6 (regulator of

DNA replication), and Stmn1 (regulator of mitotic spindle) (Figures

2E and S2D), but also fibrillarin (Fbl), a host factor whose expres-

sion is required by several viruses (Deffrasnes et al., 2016) (Fig-
Figure 3. scRNA-Seq of 6 COVID-19 Samples Reveals Myeloid Remod

(A) A 2-dimensional visualization of 50,615 single cells from three mild and six se

grouping of cells into 27 subsets, based on transcriptional similarity (Figure S3A

(B) Quantification of the three main compartments, myeloid, lymphoid, and epith

(C) Density plots depicting projection of cells from the mild (left) and severe (righ

(D–F) Quantification of the frequency of specific cell subsets in the myeloid (D), lym

marks patient S1, co-infected with the human metapneumovirus (Figures 4D–4H

(G) Percentage of proliferating cells (determined by thresholding over a cell-cycle

on the 2D map shown in (A).

(H) Quantification of the type I interferon response gene module across 455 met

change over the median expression of the module across all metacells.

(I) Differential gene expression analysis. Each panel compares pooled gene expres

CD8+ T cells (right) cell subsets.

(J) Differential gene expression analysis between cells belonging to AM (left) and S

and J) Values represent log2 size-normalized expression (transcripts per 1,000 U

See also Figure S3.
ure 2E). This is in line with a previous report highlighting the ability

of LCMV to trigger an abortive form of cell division blocked in the

G1 phase (Beier et al., 2015). Altogether, our results show that

Viral-Track is sufficient to detect infected cells in in vivo scRNA-

seq data and infer the differential gene expression in infected

versus bystander cells.

A Single-Cell Map of SARS-CoV-2 Infection in Mild and
Severe Patients
COVID-19 is a viral disease caused by SARS-CoV-2 infection,

which has recently been recognized as the cause for a pandemic

(Wang et al., 2020a). Little is currently known about the course of

the disease and how the virus interacts with the host immune

system in its mild and severe manifestations. To gain insights

on the infection course in humans, we performed scRNA-seq

and Viral-Track analysis on BALF samples from three mild and

six severe COVID-19 patients (Liao et al., 2020). In total, 50,615

cells passedquality control andwere analyzed using theMetaCell

algorithm (Baran et al., 2019) (Figure 3A; STAR Methods). Meta-

cell analysis coarsely grouped the metacells into the myeloid,

lymphoid, and epithelial lineages, and each lineage was further

subdivided into smaller subsets (Figures 3A, 3B andS3A). Among

epithelial cells, we identified epithelial progenitors (expressing

SOX4), type II alveolar cells (AT2, expressing SFTPB), ciliated

cells (FOXJ1), ionocytes (CFTR), goblet cells (MUC5B), and club

cells (SCGB1A1; Figure S3B). Lymphoid cells consisted several

subtypes of CD4+ T cells, including naive CD4+ T cells (express-

ing CCR7), regulatory T cells (Treg, expressing FOXP3), and T

follicular helper cells (Tfh, expressing CXCL13 and PDCD1), but

also diverse CD8+ subsets, such as NK cells (NCAM1), resident

memory CD8+ T cells (Trm, CD8A, and ZNF683), effector CD8+

T cells (GZMA and GZMK), and cytotoxic CD8+ T cells (GNLY,

PRF1), as well as B cells (CD79A; Figure S3C). The myeloid

compartment exhibited a high diversity of cell states, including

neutrophils (FCGR3B), mast cells (CPA3), alveolar macrophages

(FABP4), dendritic cells (DCs; FSCN1), and plasmacytoid DCs

(pDC; TCF4) as well as a large diversity of monocytes (FCN1)

and monocyte-derived macrophages (SPP1) sub-populations

(Figure S3D). These results were robust across different analysis

platforms (Liao et al., 2020).

Comparison of the cellular landscape of mild and severe

patients revealed key differences in the composition of BAL
eling in Severe Patients

vere COVID-19 patients, generated by the MetaCell algorithm. Colors indicate

).

elial, across the three mild (M1–M3) and six severe (S1–S6) patients.

t) patients on the 2D map shown in (A).

phoid (E), and epithelial (F) compartments, across the nine patients. Diamond

). Horizontal lines indicate mean frequency.

-related gene module, detailed in Table S3) in each of 455 metacells, projected

acells, projected on the 2D map shown in (A). Color scale represents log2 fold

sion between naive and non-naive CD4+ T cells (left) and effector and cytotoxic

PP1hiC1Qhi macrophages (right) frommild (x axis) and severe (y axis) patients. (I

MI).
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samples (Figures 3B and 3C). We found changes to each of the

three compartments (Figures 3D–3F and S3E–S3G). While alve-

olar macrophages and pDC where enriched in the myeloid

compartment in the mild patients, the severe patients’ myeloid

cells were characterized by a patient-specific diversity associ-

ated with accumulation of neutrophils, FCN1+ monocytes, and

monocyte-derived SPP1+ macrophages (Figures 3D and S3E).

Additionally, NK cells and naive CCR7+ CD4+ T cells were

consistently enriched across severe patients BAL, while

ZNF683hi CD8+ Trm cells were specific to mild patients (Figures

3E and S3F). We also observed changes in the epithelial

compartment, as severe patients exhibited higher numbers of

club cells and AT2 cells (Figures 3F and S3G). By investigating

expression patterns of shared gene expression programs, we

observed that cytotoxic CD8+ cells and the CD4+ Tfh cells are

the most proliferative compartments (Figure 3G), while a broad

interferon type I response, a hallmark of viral response, is mainly

expressed by neutrophils and, to a lesser extent, FCN1+ mono-

cytes (Figure 3H). We next performed in-depth differential gene

expression analysis between subsets characteristic of mild or

severe patients. We found that CD4+ T cells in the severe pa-

tients exhibit a more naive phenotype, expressing higher levels

of IL7R, CCR7, S1PR1, and LTB. The CD8+ Trm cells signatures

are restricted to the mild patients and have higher levels of the

effector molecules XCL1, ITGAE, CXCR6, and ZNF683 (Fig-

ure 3I). Comparing gene expression differences in myeloid types

between severe and mild patients revealed disease severity-

associated upregulation of inflammatory chemokine genes in

SPP1+ monocyte-derived macrophages populations (CCL2,

CCL3, CCL4, CCL7, and CCL8; Figure 3J), as well as genes

associated with hypoxia or oxidative stress (HMOX1 and

HIF1A), and downregulation of MHC class II (HLA-A and HLA-

DQA1) and type I IFN genes (IFIT1 and OAS1). Alveolar macro-

phages displayed a severity-associated signature, including

upregulation of the chemokines CCL18 and CCL4L2 and the

cathepsins CTSL and CTSB (Figure 3J). Together, we identified

dramatic differences between the mild and severe COVID-19

patients, including an inflammatory signature and a perturbed

immune response associated with the severe manifestation

of the COVID-19 disease. These also highlight potential

immunotherapy treatment of the severe patients by targeting

the hyper inflammatory response that is activated by inflamma-

tory cytokines such as interleukin (IL)-6 and IL-8 (Liu et al.,

2019) (Figure S3H).
Figure 4. Viral-Track Reveals Infection Specificity and a Co-infection i

(A) Total number of viral reads mapped to the SARS-CoV-2 viral genome in the p

(B) Coverage plot of the SARS-CoV-2 viral genome.

(C) Enrichment of viral UMIs over expected values across 361 metacells, projec

expected vUMIs. Only metacells with more than one expected UMI are plotted.

(D) Result of Viral-Track analysis on patient S1. For each viral segment, repres

sequences) and the percentage of the segment that is mapped is plotted. Gre

segments with more than 50 mapped reads are plotted.

(E) Coverage plot of the human metapneumovirus (hMPV) genome.

(F) Distribution of hMPV UMIs across patient S1 sequenced cells. Red dashed li

(G) Enrichment of vUMI+ cells over expected values across 297 metacells, proje

expected. Only metacells with more than one expected vUMI+ cell are plotted.

(H) Volcano plot showing the relative expression between infected and bystande

statistically significant (p value <0.01) are colored in orange.

See also Figure S4.
Viral-Track Identifies Co-infection of SARS-CoV-2 with
the Human Metapneumovirus
Tocharacterize the in vivocrosstalkofSARS-CoV-2with its human

host, we applied Viral-Track on the data generated from the nine

SARS-CoV-2 patients and the rich cellular landscape we identi-

fied. SARS-CoV-2 transcripts were detected in all six severe sam-

ples in variable amounts, ranging from less than 400 transcripts to

more than 15,000 (Figures 4A and S4A). In contrast, no viral reads

were detected in the three mild patients (Figure 4A). Coverage

analysis revealed that the majority of the viral reads mapped to

the 30 end of the viral segment and corresponded to positive-

stranded RNA (Figure 4B). This is in agreement with the coronavi-

rus transcription:due toanested transcriptionprocessall genomic

and subgenomic RNAmolecules share the same 30 end (Masters,

2006). We then analyzed the enrichment of vUMIs in the cell pop-

ulations represented in the BAL samples. We observed a strong

enrichment of viral reads in the ciliated and epithelial progenitor

population, two known cellular targets of the virus, which express

the main receptor of the SARS-CoV-2 virus ACE2, as well as

TMPRSS2, a protease essential for SARS-CoV-2 entry (Figures

4C and S4B; Table S2) (Hoffmann et al., 2020). We also observed

enrichment of SARS-CoV-2 reads in the SPP1+macrophage pop-

ulation, suggesting either that SARS-CoV-2 can infect immune

cells from the myeloid compartment or that SPP1+ macrophages

phagocytose infected cells or viral particles. Differential gene

expression analysis between vUMI+ infected and vUMI�

bystander SPP1+ macrophages in the patients with the highest

viral load, revealed that infected macrophages have a higher

expression of chemokines (CCL7, CCL8, and CCL18) and APOE,

and a lower expression of TAOK1, a serine/threonine-protein ki-

nase in the p38 MAPK cascade (Figure S4C). Interestingly,

CD147 (also known as BSG), a potential new SARS-CoV-2

receptor (Wang et al., 2020b), is expressed by all cell types,

including immune cells, suggesting alternative routes for the virus

to infect these cells.

Often in cases of infectious diseases, the specific infecting vi-

rus is not known, or may be accompanied by co-infection with

additional unknown viruses. Viral-Track applies an unsupervised

mapping strategy and is optimally designed to systematically

profile the source of infection or co-infections in human clinical

samples. To our surprise, Viral-Track analysis of data from one

of the severe patients (S1) revealed the presence of a second vi-

rus, the human metapneumovirus (hMPV) (NC_039199 Refseq

sequence, Figure 4D) with more than one million reads mapped
n Severe COVID-19

rofiled COVID-19 patients.

ted on the 2D map shown in Figure 4A. Color scale indicates log2 observed/

ented by a dot, the entropy of the sequence (how repetitive are the mapped

en dots correspond to viral segments that have passed quality control. Viral

ne indicates automatic thresholding of vUMI+ cells.

cted on the 2D map shown in Figure 4A. Color scale indicates log2 observed/

r monocytes of patient S1. Differentially expressed (>1 log2 fold change) and
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to hMPV in this specific patient. hMPV is a non-segmented, sin-

gle-stranded, and negative-sense RNA virus that is responsible

for upper and lower respiratory tract infections in mostly young

(<5 years) children but can also target elderly as well as im-

muno-compromised patients (Panda et al., 2014). hMPV has

been implicated as a possible source of co-infection with the

original SARS-CoV virus (Chan et al., 2003).

Coverage analysis revealed thatmost reads fall into the N, P, M,

F,M2, SH,G, but not L, genes of hMPV (Figure 4E).Weobserved a

typical pattern of biased scRNA-seq coverage, indicating that the

N, P,M, F,M2, SH, andGgenes are actively transcribed, and sug-

gesting that the hMPV was active and replicating at the time of

sample collection. Analysis of the viral UMI distribution across

cells revealed a substantial viral load in a large subset of the cells,

spanning hundreds to thousands vUMIs per infected cell (Fig-

ure 4F), independently of the total host UMIs in that cell (Fig-

ure S4D). We mapped the infected cells and characterized their

distribution across cell types. The infected patient is characterized

by high levels of monocytes and CD4+ T cells (Figure S4E). Unlike

the SARS-CoV-2 virus infection map, hMPV-infected cells were

highly enriched in the monocyte compartment but not in the

epithelial and SPP1+ macrophage compartments (Figure 4G).

We tested whether the hMPV could alter the function of the in-

fected monocytes, and therefore influence the course of the dis-

ease. Using Viral-Track, we detected a large number of up- and

downregulated genes in infected monocytes compared to

bystander monocytes (Figure 4H). Interestingly, several key recep-

tor genes required for monocyte activation such as CD16

(FCGR3B),G-CSF receptor (CSF3R), and the formyl peptide recep-

tor (FRP1) were downregulated in the infected compared to the

bystandercells.Moreover,weobservedadramaticdownregulation

of type I Interferon signaling and interferon stimulatedgenes (ISGs),

includingviral restriction factors, (e.g., IFIT3). Agenesetenrichment

analysis (Figure S4F) revealed a strong enrichment of interferon

response genes in the downregulated gene set, suggesting that

the hMPV is strongly downregulating the IFN response pathway.

Several anti-inflammatory genes were upregulated, including

LILRB4 (a potent inhibitor of monocyte activation) (Lu et al., 2009)

and MITF, a transcription factor known to be a critical suppressor

of innate immunity (Harris et al., 2018). Last, we observed a positive

and significant association between total number of hMPV UMIs

andproductionof type I IFN, highlighting thatwhile hMPVdampens

the response to type I IFN, production of this signal is highly

restricted to a rare (~1%) population of cells with a high viral load

(Figure S4G). Altogether, our analysis described the distribution of

SARS-CoV-2-infected cells in patient’s BAL and revealed the pres-

ence of a viral co-infection by the hMPV that dampens the immune

activation of the monocyte compartment in the infected patient.

Further large-scale analyses of mild versus severe patients need

to be conducted to better understand if the co-infection is corre-

lated or even causative in SARS-CoV-2 pathology.

DISCUSSION

The virosphere contains hundreds of thousands of species that

constantly interact with their host cells. Over the years, several

genomic techniques have been developed to detect virus-derived

sequences in human samples. For instance, deep sequencing as-
1484 Cell 181, 1475–1488, June 25, 2020
says are unbiased and sensitive in their ability to detect extremely

rare viral sequences (Moustafa et al., 2017), but do not provide in-

formation about the infected cells and the cellular changes

induced by the infection. Alternatively, it is possible to combine

DNA probes with scRNA-seq to enrich for viral sequences and in-

crease the sensitivity of the assay, but this requires prior knowl-

edge of the viruses present in each sample (Zanini et al., 2018).

Here, we present Viral-Track, a robust and unsupervised compu-

tational pipeline that can detect viral RNA in any scRNA-seq data-

setwithout the need for experimentalmodificationsor prior knowl-

edge of the infecting agent. Viral-Trackwas benchmarked on data

originating from various tissues, infected by viruses with marked

differences in their RNA properties, and generated with different

scRNA-seq platforms. We demonstrate that Viral-Track can

readily provide essential information on infection status in clinical

samples, identify infected cells, probe viral-induced transcrip-

tional alterations, and reveal cases of co-infection.

In practice, only 70%–85%of scRNA-seq readsmap to the host

genome and represent polyadenylated exonic host transcripts,

whereas the remainderof thedata isusuallyoverlooked inanalysis.

We show that these unmapped scRNA-seq reads, in pathological

human samples, potentially contain valuable information on viral

infection and can be effectively used for viral genome assembly.

Viral-Track can resolve complex cellular ecosystems perturbed

byviral infection andprovideanunbiasedmapof the infectedcells,

as well as the transcriptional perturbations induced by the virus at

the single cell level. We combine Viral-Trackwith a novel statistical

approach to detect differentially expressed genes from scRNA-

seq data, therefore allowing the detection of gene expression

changes triggered by viral infection and differentiating them from

themore abundant bystander effects, such as type I IFN signaling,

at thesinglecell level.Furtheradvanceswill focusonapplyingViral-

Track on largescale datasets containing scRNA-seq data from

dozens of samples, leading to robust single-cell viralmetagenomic

studies that characterize the viral evolution and interactions of vi-

rus-induced disease mechanisms with host genetics.

Here, we applied scRNA-seq and Viral-Track analysis to

COVID-19 patient-derived samples to provide a cellular and viral

atlas of the BAL lung cells from COVID-19 patients. This analysis

revealed the diversity of the immune responses across COVID-

19 patients and between mild and severe patients. We expect

that as the pandemic keeps spreading and global research ef-

forts grow, additional scRNA-seq samples from COVID-19 pa-

tients will be generated, including patients treated with emerging

immunotherapies (Liu et al., 2019). Such an approach might help

to solve key questions including the contribution of the humoral

response (Iwasaki and Yang, 2020), the role of the IL6 pathway

(Herold et al., 2020), and the immune memory induced by the vi-

rus (Prompetchara et al., 2020). Viral-Track can contribute to the

global effort to identify the different cellular compartments that

are targeted and affected by COVID-19 and other viruses and

to detect possible co-infection by unexpected viruses. Co-infec-

tions are gaining recognition in the scientific and medical com-

munity as critical factors in disease prognosis (Zhang et al.,

2020). So far, research focused mainly on co-infections of bac-

terial sources or of well-known viruses such as influenza A (Wu

et al., 2020). Understanding the diversity of viral co-infections

and their mechanisms of immune suppression at the cellular
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andmolecular level could therefore provide highly valuable infor-

mation and lead toward possible therapeutic targets, especially

for severe patients, whose treatment options are limited.

Limitations
Viral-Track is a new and powerful tool to decipher host-viral in-

teractions. However, its impact is dependent on several factors,

the most critical one being the biochemical and pathophysiolog-

ical properties of the virus. The absence of a poly(A) tail at the

end of viral RNA molecules can significantly decrease their cap-

ture rate efficiency in current scRNA-seq techniques, as shown

by the LCMV example. This may hinder Viral-Track’s ability to

robustly identify infected cells or discern differential expression

between infected and bystander cells in such viruses. Other

properties of the viral RNA molecules, absence/presence of 50

capping, nucleotide composition, or dependence on RNA bind-

ing proteins, may also affect capture efficiency, and as the tech-

nology develops, further research will focus on the classification

of molecular features that facilitate or prevent virus identification

by scRNA-seq. Notably, non poly(A)-based scRNA-seq tech-

niques, such as RamDA-seq (Hayashi et al., 2018), can be poten-

tially used when profiling these datasets.

Another limiting factor for Viral-Track’s applicability is the

potential scarcity of viral reads and infected cells in the sam-

ple. As shown in our analysis of SARS-CoV-2-infected sam-

ples, only a limited number of viral reads are detected in

some of the samples. This may be due to the specific stage

of the disease (He et al., 2020), or sampling biases favoring

mainly the lung immune populations, with lower representa-

tion of non-immune cells that are the primary targets of the vi-

rus. Therefore, future COVID-19 scRNA-seq studies should

consider this limitation in their experimental design and aim

for a better representation of the upper respiratory tissue

and the lung parenchyma. Alternative approaches may rely

on index sorting and single-cell transcriptome-trained sorting

to design optimal gating strategies for capturing and enriching

the stromal populations.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

santi-mouse TCRb biotin (clone H57-597) Biolegend Cat#:109203; RRID:AB_313426

anti-mouse CD3 biotin (clone 17A2) Biolegend Cat#:100243; RRID:AB_2563946

anti-mouse CD19 biotin (clone 6D5) Biolegend Cat#:115503; RRID:AB_313638

Bacterial and Virus Strains

Vesicular Stomatitis Virus (VSV) Indiana

Strain

In house N/A

Lymphocytic choriomeningitis virus

(LCMV)- Armstrong (Arm) strain

In house N/A

LCMV-Arm-eGFP In house N/A

Biological Samples

COVID-19 BAL samples Shenzhen Third People’s Hospital N/A

HBV liver sample Shenzhen Third People’s Hospital N/A

Chemicals, Peptides, and Recombinant Proteins

Liberase TL Roche Cat#:5401020001

Dnase I, grade II Roche Cat#:10104159001

Critical Commercial Assays

Chromium Single Cell 3ʹ Reagent Kit (v3
chemistry)

10X Genomics 1000075

Chromium Single Cell V(D)J Reagent Kits

(v1 Chemistry)

10X Genomics 1000006

Deposited Data

Raw data files for the 10X COVID-19 and

HBV patients

This paper GEO: GSE145926

Raw data files for the LCMV/VSV single-cell

RNA-seq

This paper GEO: GSE149443

Experimental Models: Organisms/Strains

Mouse: C57BL/6 WT Jackson laboratories RRID:IMSR_JAX:000664

Software and Algorithms

R (3.5.0) The R project https://www.r-project.org

Python (3.6.5) Python software foundation https://www.python.org

STAR (2.7.0) Dobin et al., 2013 https://github.com/alexdobin/STAR

Samtools (1.4.0) Li et al., 2009 http://www.htslib.org/download/

StringTie (1.3.5) Pertea et al., 2015 https://ccb.jhu.edu/software/stringtie/

UMI-tools (1.0.0) Smith et al., 2017 https://umi-tools.readthedocs.io/en/latest/

Pagoda2 (0.1.0) Lake et al., 2018 https://github.com/hms-dbmi/pagoda2/

MetaCell (0.3.41) Baran et al., 2019 https://github.com/tanaylab/metacell

Cell Ranger (3.1.0) N/A https://support.10xgenomics.com/

single-cell-gene-expression/software/

pipelines/latest/what-is-cell-ranger

Other

MARS-seq reagents Jaitin et al., 2014 N/A
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Ido Amit

(ido.amit@weizmann.ac.il).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The whole Viral-Track pipeline is freely available at https://github.com/PierreBSC/Viral-Track. The datasets generated during this

study were deposited to the Gene Expression Omnibus (GEO) repository with accession codes GEO: GSE145926 and GSE149443.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
C57BL/6 mice were purchased from Jackson Laboratories and bred and housed at theWeizmann Institute of Science animal facility,

under specific pathogen-free conditions. Femalemice, 6-8weeks of age, were used for all experiments. Experimental protocols were

approved by the Weizmann Institute of Science Ethics Committee and were performed according to institutional guidelines.

LCMV/VSV infections
For LCMV infection, 1x105 Focus-Forming Units (FFUs) of the LCMV-Arm strain were injected. For VSV, 1x105 Plaque-Forming Units

(PFUs) of the VSV Indiana strain were used. Mice were anesthetized and viruses administered by intradermal injection into the ear

pinna. 24h later, mice were sacrificed and auricular LN were harvested.

Subjects
This study was conducted according to the principles expressed in the Declaration of Helsinki. Ethical approval was obtained from

the Research Ethics Committee of Shenzhen Third People’s Hospital. All participants provided written informed consent for sample

collection and subsequent analyses.

METHOD DETAILS

Lymph Node MARS-seq data generation
To prepare single cell suspensions for MARS-seq and flow cytometry, auricular LNs were digested in IMDM containing 100mg/mL

Liberase TL and 100mg/mLDNase I (both fromRoche, Germany) for 20minutes at 37C. In the last 5minutes of incubation, EDTAwas

added at a final concentration of 10mM. Cells were collected, filtered through a 70mm cell strainer, washed with IMDM and main-

tained strictly at 4C. Cells were sorted with FACSARIA-FUSION (BD Biosciences, San Jose, CA). Prior to sorting, all samples

were filtered through a 70-mm nylon mesh. Isolated cells were single cell sorted into 384-well cell capture plates containing 2 mL

of lysis solution and barcoded poly(T) reversetranscription (RT) primers for single-cell RNA-seq (Jaitin et al., 2014). Four empty wells

were kept in each 384-well plate as a no-cell control for data analysis. Immediately after sorting, each plate was spun down to ensure

cell immersion into the lysis solution, snap frozen on dry ice, and stored at –80C until processing Single-cell RNA-seq libraries were

prepared as previously described (Jaitin et al., 2014). In brief, mRNA from single cells sorted into capture plates were barcoded and

converted into cDNA and then pooled using an automated pipeline. The pooled sample was linearly amplified by T7 in vitro transcrip-

tion, and the resulting RNA was fragmented and converted into a sequencing-ready library by tagging the samples with pool barc-

odes and Illumina sequences during ligation, RT, and PCR. Each pool of cells was tested for library quality and concentration as

described previously (Jaitin et al., 2014).

Influenza MARS-seq data generation
Full description of the protocol used to generate the Influenza A lung data can be found in Steuerman et al. (2018). Influenza PR8

H1N1 influenza virus (A/Puerto Rico/8/34) was cultivated in hen egg anion. 40mL of diluted virus (6x103 PFU per mouse) were inoc-

ulated intranasaly to the mice, or 40mL of PBS for the control mice. Mice were killed 48 or 72h post infection and the lung perfused.

Immune and none-immune cells were then extracted using two different extraction protocols before being single-cell sorted in 384-

well plates and sequenced using the original MARS-seq protocol (Jaitin et al., 2014).

LCMV spleen MARS-seq data generation
Description for the full protocol used to generate the NICHE-Seq spleen data can be found in Medaglia et al. (2017). Briefly female

mice received 1x106 FFU of LCMV-Arm or LCMV-Arm-eGFP in the footpad. 72 hours after injection, spleens were harvested and

forced through a 70mm mesh to form a single-cell suspension. Cells were then single-cell sorted using a SORP-aria into 384-well
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plates containing lysis buffer before processing the plate according to the MARS-seq protocol (Jaitin et al., 2014). All infectious work

was performed in designated Biosafety Level 2 (BSL-2) and BSL-3 workspaces in accordance with institutional guidelines

10X HBV liver data generation
The approximately 1 cm long Liver biopsy was homogenized bymincing with scissors into smaller pieces (~0.5mm2 per piece). Then

the tissue was transferred into 10mL of enzymemix consisting of 0.3 mg/ml collagenase type IV (Sigma, C9891) and DNase I (Sigma,

D5025) for mild enzymatic digestion for 1 h at 37�C while shaking. 5 mL of Dulbecco’s phosphate-buffered saline (DPBS, Thermo,

14190250) supplemented with 5% FBS was added to interrupt digestion and dissociated cells in suspension were passed through a

40 mm strainer and centrifuged at 300 g for 5 min at 4�C. Erythrocytes were lysed using Ammonium-Chloride-Potassium (ACK,

Thermo, A1049201), and finally cells were re-suspended in DPBS supplemented with 1% FBS at the concentration of 2, 000

cells/ml for scRNA-Seq. The single-cell capturing and downstream library constructions were performed using the Chromium Single

Cell 30 V3 library preparation kit according to the manufacturer’s protocol (10x Genomics). Full-length cDNA along with cell-barcode

identifiers were PCR-amplified and sequencing libraries were prepared and normalized to 3 nM. The constructed library was

sequenced on BGIMGISEQ-2000 platform. The Cell Ranger Software Suite (Version 3.1.0) was then used to perform sample de-mul-

tiplexing, barcode processing and single-cell 30 UMI counting with human GRCh38 as the reference genome

10X COVID-19 data generation
20 mL of BALF was obtained and placed on ice. BALF was processed within 2 hours and all operations were performed in BSL-3

laboratory. By passing BALF through a 100 mm nylon cell strainer to filter out lumps, the supernatant was centrifuged and the cells

were re-suspended in the cooled RPMI 1640 complete medium. Then the cells were counted in 0.4% trypan blued, centrifuged and

re-suspended at the concentration of 23 106 /ml for further use. Total 11 ml of single cell suspension and 40 ml barcoded Gel Beads

were loaded to Chromium Chip A to generate single-cell gel bead-in-emulsion (GEM). The poly-adenylated transcripts were reverse-

transcribed later. The single-cell capturing and downstream library constructions were performed using the Chromium Single Cell 50

library preparation kit according to the manufacturer’s protocol (10x Genomics). Full-length cDNA along with cell-barcode identifiers

were PCR-amplified and sequencing libraries were prepared and normalized to 3 nM. The constructed library was sequenced on BGI

MGISEQ-2000 platform. Each sample was sequenced on a different sequencing run to avoid contamination between samples. The

Cell Ranger Software Suite (Version 3.1.0) was then used to perform sample de-multiplexing, barcode processing and single-cell 50

UMI counting with human GRCh38 as the reference genome. A more extensive description of the data generation process can be

found in Liao et al. (2020).

QUANTIFICATION AND STATISTICAL ANALYSIS

Read mapping/alignment
Reads were aligned using STAR 2.7.0 (Dobin et al., 2013) in the two-pass mode using the following parameters:–runThreadN was set

to 14,–outSAMattributes to ‘NH HI AS nM NM XS’,–outSAMtype to ‘BAM SortedByCoordinate’,–outFilterScoreMinOverLread to

0.6,–outFilterMatchNminPverLread to 0.6, and–twopassMode to ‘Basic’.

Viral database and STAR Index building
As STAR performance drastically dropped when the reference index contains more than 10.000 scaffold/chromosomes, we decided

to base our analysis on the limited, but high-quality, viruSITE database (Stano et al., 2016), derived from the NCBI Refseq database.

The corresponding FASTA file was downloaded from the viruSITE website (http://www.virusite.org/archive/2019.1/genomes.fasta.

zip). STAR indexes were build for both human andmouse samples using respectively the GRCh38 (hg38) andGRCm38 (mm10) refer-

ence genomes in addition with the whole viruSITE database. Both reference genomes were downloaded at http://www.ensembl.

org//useast.ensembl.org/info/data/ftp/index.html?redirectsrc=//www.ensembl.org%2Finfo%2Fdata%2Fftp%2Findex.html.

For the analysis of COVID-19 patients we added the official SARS-CoV-2 reference genome from the Refseq database

(NC_045512.2) as it has not been added to the viruSITE database yet. In total this database contains 11988 viral segments from

9431 different viruses.

Processing and filtering of the BAM files
We empirically observed that viral genome sequences can contain highly repetitive subsequences and can therefore create false

positive signal. Moreover, some viral genes can share a significant similarity with host genes and also generate mapping artifacts.

To remove those, we implemented a strict filtering approach where for each viral segment, a list of mapping features are measured

and used to estimate the quality of the mapping.

Following the alignment, the resulting BAM files were processed using the samtools toolbox (Li et al., 2009): first the BAM files were

indexed using the samtools index command. Virus segment with more than 50mapped reads were detected using the samtools idx-

stats command and a unique bam file was then created for each of the viral segment using the samtools view command.

Each viral bam files were then loaded into an R environment using the readGAlignments() function from the GenomicAlignments

package. Various features were then extracted to assess the quality of the mapping:
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d The length of the longest mapped contig computed using the coverage() function.

d The percentage of the viral segment that is mapped, also computed using the coverage() function.

d The mean sequencing quality of the mapped reads.

d The number and percentage of uniquely mapped reads.

d The mean sequenced entropy of the mapped reads defined as follows: for each mapped read each nucleotide frequency was

extracted using the alphabetFrequency() function of the Biostring package and averaged over the reads. Then the correspond-

ing Shanon entropy was computed using napierian logarithm.

Empirically we determined that amean sequence entropy bigger than 1.2, a coverage bigger than 5%and the longest contig bigger

than three times the mean read length is sufficient to consider a viral segment to be present. This filter configuration eliminated all

manually identified artifacts in the various benchmarked datasets and was used unchanged in the HBV and COVID-19 patient

data analysis.

When using this strategy, we observed two different kinds of ‘contamination’:

d
- the first one consists of the detection of retroviruses specific to the sequenced host species: this is likely due to the expression

of host endogenous retro-viral elements that highly similar to ‘real’ retroviruses.

d
- the second is the presence of a plant virus, the Tomato brown rugose fruit virus: this is an emerging virus that infects tomatoes

and peppers and is endemic in Israel and Jordan. It is highly contagious and spreads easily. We detected this virus only in sam-

ples sequenced in Rehovot (Israel) suggesting that it was due to an airborne contamination.

To improve computation speed, this step was parallelised using the doParallel R package.

Transcript reconstruction
As viral genomes are poorly annotated, we decided to systemically reconstruct the transcriptome of each viral segment detected

using the transcript assembler StringTie (Pertea et al., 2015). StringTie was used with default parameter except the minimum isoform

abundance parameter -f which was set to 0.01 to detect lowly abundant transcripts and the minimal distance between two transcript

-g set to 5.

MARS-seq data demultiplexing and UMI count
In order to have a UMI-counting procedure adapted to viral genomes, i.e that distinguish spliced and un-spliced RNA molecule, we

developed an in-house R script based on the GenomicRanges, GenomicAlignments and GenomicFeatures packages that used the

same strategy as the commercial CellRanger toolkit. Briefly cell barcodes were extracted and compared with a cell barcode whitelist

provided by the MARS-seq2 demultiplexing pipeline (Keren-Shaul et al., 2019): cell barcode that belong to the whitelist were kept

while cell barcodes that did not belong to the whitelist but that has a highly similar barcode (Hamming distance equal to one,

computed using the stringdist() function from the stringdist package) were corrected and kept. UMIs were also extracted and

mono-nucleotide UMIs filtered out. Hamming distances between UMIs assigned to the same cell and the same gene were then

computed similarly to cell barcodes and UMIs with a Hamming distance equal to one were aggregated and considered as redundant

UMIs. Lastly the mapping file was loaded using the readGAlignments() function from the GenomicAlignments package and reads

were assigned to a specific viral gene using the findOverlaps() function from the same package. In case the read mapped to a given

viral transcript but was not assigned to any viral gene, it was considered as coming from an un-spliced viral RNA molecule.

Drop-seq and 10X data download, pre-processing and demultiplexing
Fastq files were downloaded through the SRA Explorer tool (https://sra-explorer.info/#). Identification and correction of cellular bar-

code, as well as UMI demultiplexing was performed using UMI-tools 1.0.0 (Smith et al., 2017). First, cell barcodes were extracted and

a putative whitelist computed using the umi_tools whitelist command with the parameters ‘–stdin —bc-pattern =

CCCCCCCCCCCCCCCCNNNNNNNNNN–log2stderr ’ for the 10X data. For Drop-Seq data the same command is used except

the–bc-pattern option set to CCCCCCCCCCCCNNNNNNNN. Collapsing of the UMIs is performed using the command umi_tools

extract with parameters ‘—bc-pattern = CCCCCCCCCCCCCCCCNNNNNNNNNN —stdin —filter-cell-barcode’ on the 10X data

and with the same command for Drop-seq data except for the–bc-pattern option set to ‘CCCCCCCCCCCCNNNNNNNN’. Following

themapping of the reads to viral genomes and transcript assembly, themapped readswere assigned to transcripts using the R pack-

age Rsubread through the function featureCounts() with default parameters. The command umi_tools count is then used to compute

the final expression table with the following parameters:–per-gene–gene-tag = XT–assigned-status-tag = XS–per-cell.

Analysis of the MARS-seq spleen LCMV dataset
High-level analysis were performed using the R-based Pagoda2 pipeline (https://github.com/hms-dbmi/pagoda2/) (Lake et al., 2018)

in addition to an in-house R script. Briefly UMI table were loaded and cells with less than 350 UMIs were removed. Lowly abundant

genes (less than 100 UMIs) were also removed from analysis. Analysis of the filtered dataset was then performed similarly to our pre-

vious paper (Blecher-Gonen et al., 2019) by using the 1500 most variant genes and 100 PCs for dimensionality reduction. kNN graph

was build with a parameter K equal to 30 and Louvain’s method used for clustering. Cluster marker genes were computed by using
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the getdiffGenes function with default parameters. Data were visualized using UMAP (McInnes et al., 2018) implemented by the uwot

package.

Analysis of the 10X HBV liver dataset
High-level analysis were performed using the R-based Pagoda2 pipeline (https://github.com/hms-dbmi/pagoda2/) (Lake et al., 2018)

in addition to an in-house R script. Briefly UMI table were loaded and cells with less than 1000 UMIs were removed. Lowly abundant

genes (less than 50 UMIs) were also removed from analysis. Analysis of the filtered dataset was then performed similarly to our pre-

vious paper (Blecher-Gonen et al., 2019) by using the 1000 most variant genes and 100 PCs for dimensionality reduction. kNN graph

was build with a parameter K equal to 30 and Louvain’s method used for clustering. Cluster marker genes were computed by using

the getdiffGenes function with default parameters. Data were visualized using UMAP (McInnes et al., 2018) implemented by the uwot

package.

Analysis of the COVID-19 BAL dataset
Upstream processing of reads was done with the CellRanger toolkit, resulting in a UMI table of 75,790 cells with a median UMI count

of 2,442, and a median of 868 genes per cell. Cells with less than 500 UMI, or more than 50% mitochondrial genes were excluded.

We used the MetaCell package (Baran et al., 2019) to group single cells from all patients into groups of transcriptionally homoge-

neous groups, termed metacells . We first removed mitochondrial genes, ERCC, and the diverse immunoglobulin genes (IGH, IGK,

and IGL).

Gene features for metacell covers were selected using the parameter Tvm = 0.4, total umi > 30, and more than 4 UMI in at least 3

cells (using the functions mcell_gset_filter_varmean, and mcell_gset_filter_cov). We excluded gene features associated with the cell

cycle, stress response, type I interferon, and batch-specific genes via a clustering approach (using the functionsmcell_mat_rpt_cor_-

anchors andmcell_gset_split_by_dsmat). To this end we first identified all genes with a correlation coefficient of at least 0.1 for one of

the anchor genes TOP2A, MKI67, PCNA, MCM4, UBE2C, STMN1 (cell cycle), HSPA1B, HSPA1A, DNAJB1, HSPB1, HSPA6, FOS,

JUN, CCL4, CCL4L2, MT1E, MT1X, MT1F, TYMS, GADPH, DUT, HMGB2 (stress and batch effect), IFIT1, IFIT3, OASL, IRF7, IRF1,

STAT1, and STAT3 (type I IFN). We then hierarchically clustered the correlation matrix between these genes (filtering genes with low

coverage and computing correlation using a down-sampled UMI matrix) and selected the gene clusters that contained the above

anchor genes. We thus retained 402 genes as features (Table S3). We used metacell to build a kNN graph, perform boot-strapped

co-clustering (500 iterations; resampling 70% of the cells in each iteration), and derive a cover of the co-clustering kNN graph (K =

100). Outlier cells featuring gene expresssion higher than 4-fold than the geometric mean in the metacells in at least one gene were

discarded.

Annotation of the metacell model was done using the metacell confusion matrix and analysis of marker genes. Detailed annotation

within the myeloid, lymphoid and epithelial compartments was performed using hierarchical clustering of the metacell confusion ma-

trix (Figure S3A) and supervised analysis of enriched genes. Metacells enriched for markers from more than one lineage (either T

(TRBC2), myeloid (S100A8, C1QB), epithel (KRT18), and plasma cells (XBP1)) were marked as doublets and discarded from further

analysis. We additionally discarded metacells of erythrocytes or plasma cells from further analysis.

To derive cell cycle and type I interferon response co-expressed genemodules, we used a clustering-approach as described in the

previous paragraphs (using the functions mcell_mat_rpt_cor_anchors and mcell_gset_split_by_dsmat) on a set of cell cycle and

interferon genes. We clustered, and manually inspected the resulting clusters, retrieving 72 cell-cycle related and 65 interferon

related genes (Table S3).

To extract proportion of proliferating cells (Figure 3G), we calculated for each cells the number of cell-cycle related transcripts per

1,000 UMI. Cells with more than 8 transcripts were determined proliferating.

Testing for infection specificity in COVID-19 BAL dataset
To test for SARS-CoV-2 infection specificity in different cell populations, we computed for each metacell the total number of host

UMIs (hUMI) and viral UMIs (vUMI) in the three severe patients (S1-3). We then computed for each metacell its expected vUMI

cout, based on its total UMI count (hUMI + vUMI) and the total vUMI proportion across all cells. Figure 4C shows log2 fold change

between the observed and expected UMI in eachmetacell, after adding a regularization factor ( = 5) for each factor. Log2 fold change

for the 27 subsets in Figure 3A, and calculated for each severe patient separately is shown in Table S2.

Testing for hMPV infection specificity was done in a similar manner. However, since UMI distribution across cells was abundant

and heavy-tailed, we computed for each metacell the expected number of vUMI+ cells instead of its total vUMI count. A cell was

determined vUMI+ if it had more than 10 viral UMI, as determined by automatic thresholding (Figure 4F). Figure 4G shows log2
fold change between the observed and expected vUMI+ cells in each metacell, after adding a regularization factor ( = 5) for each

factor.

Dichotomized differential gene expression analysis
ScRNA-seq data are intrinsically noisy data with a large proportion of zeros values (previously called dropouts) due to limited sam-

pling of the initial mRNA molecule pool. In addition, cell library size is a major cofounder variable, even after common normalization
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procedures such as TPM, especially for lowly expressed genes (Hafemeister and Satija, 2019). We therefore improved the method

used in our former paper (Blecher-Gonen et al., 2019) that was based on logistic regression.

Briefly our method is based on the global trend of the field that consists in sequencing large amounts of cells but with a limited

sequencing depth. Such approach will produce mostly ‘binary’ data and seem to be represent the best compromise on a cost/effi-

ciency point of view (Svensson et al., 2019). So far, several statistical models have been used tomodel and analyze scRNA-seq count

data, most of thembeing based on the zero-inflated negative-binomial (ZINB) distribution (Finak et al., 2015; Kharchenko et al., 2014).

However, recent studies suggested that those models are too complex and introduce artificial complexity (Silverman et al., 2018;

Svensson, 2020; Townes et al., 2019). We hypothesize that with such binary data, current models will not fit properly andmore suited

ones need to be developed.

We therefore developed a new approach based on the binomial complementary Log-log regression (cloglog model): once a given

group of cells has been isolated, through Louvain’s clustering for instance (Blondel et al., 2008), we first dichotomized gene expres-

sion (if the normalized expression is bigger than 0 the gene is considered as expressed) and then computed a binomial Generalized

Linear Model (GLM) with a complementary log log link function (cloglog) using the glm() R function. To mitigate the variation of the

library size as well as the global effect of the infection (bystander effect), we include both variables in the regression model. The cor-

responding p value are then computed using a Likelihood Ratio Test (LRT) and then corrected using Benjamini Hochberg correction

(Benjamini and Hochberg, 1995).

For a more comprehensive description of the approach please see Methods S1.

Automate thresholding to detect HBV and hMPV infected cells
In the case of the HBV and hMPV infections, we observed that cells could contain from one to several thousands UMIs. In order to

know which cells were really infected and which one contain viral UMIs due to ambient contamination, we decided to apply Otsu’s

thresholding after logarithmic transformation. Otsu’s method was implemented using an in-house R script (Otsu, 1979).

Gene set enrichment analysis
Gene set enrichment analysis was performed using the online GSEA tool https://www.gsea-msigdb.org/gsea/index.jsp (Liberzon

et al., 2015; Subramanian et al., 2005). The enrichment analysis was performed using the Hallmark and Gene Ontology biological

process databases. False detection rate was set to 0.05. Only the top 10 most enriched terms were reported.
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Figure S1. Benchmarking of Viral-Track on Diverse Infection Models, Related to Figure 1

A. Graph chart representing the different steps of the Viral-Track pipeline. B-D. Results of Viral-Track analysis performed on LCMV spleen, LCMV lymph node and

VSV lymph node datasets, respectively. Viral segments with more than 50 mapped reads are plotted. (E). Number of detected LCMV (left panel) and VSV (right

panel) reads in the different samples from the lymph node experiment. F. Results of Viral-Track analysis performed on the in-vitro HSV-1 data. G. Quantification of

the number of HSV-1 reads in HSV-1 infected and control samples. (H). Results of Viral-Track analysis performed on the in-vitro HIV data. I. Quantification of the

number of HIV reads in HIV infected and control samples. J. UMAP plot of the liver HBV data, dots are colored by cell subset assignment based on Louvain

clustering. K. UMAP plot of the liver HBV data. infected cells are colored in orange and bystander cells in gray.
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Figure S2. Comparison of Viral-Track Performance to Fluorescence Tagging Techniques, Related to Figure 2

A. Proportion of vUMI+ cells from total spleen and the LCMV-GFP+ population B. UMAP plot of the spleen LCMV data, spots are colored based on Louvain

clustering. C. UMAP plot of the spleen LCMV data, bystander cells are colored in gray, vUMI+ cells are colored in red and GFP+ cells in green. D. Mean gene

expression in bystander and infected MZB cells. Genes with a log2FC bigger than 1 or lower than �1 and a corrected p value lower than 0.01 are colored in

orange.
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Figure S3. Detailed Molecular and Cellular Profiling of COVID-19 BAL Samples, Related to Figure 3

A. The confusion matrix of the MetaCell model shown in Figure 3A. Entries denote for each pair of metacells the propensity of cells from both metacells to be

clustered together in a bootstrap analysis. B-D. Gene expression profiles of cells belonging to the epithelial (B), lymphoid (C), and myeloid (D). In A-D, color bars

indicate association to 27 cell subsets depicted in Figure 3A. E-G. Quantification of the frequency of specific cell subsets in the myeloid (E), lymphoid (F), and

epithelial (G) compartments, across the nine patients. Diamondmarks patient S1, co-infected with the humanMetapneumovirus (Figures 4D-4H). Horizontal lines

indicate mean frequency. (H). Projection of IL6 and IL8 (CXCL8) expression on the 2D map shown in Figure 4A. Colors represent expression quantiles.
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Figure S4. Viral-Track Performance on COVID-19 BAL Samples, Related to Figure 4
A. Results of Viral-Track analysis performed on samples with highest viral load (patients S2 and S3). B.Mean normalized expression of ACE2, TMPRSS2 and BSG

across the 27 cell subsets C. Log2 fold change between vUMI+ and vUMI- SPP1+ monocyte-derivedmacrophages in patient S2 (x axis) and patient S3 (y axis). D.

Relation between total human and viral UMIs in cells from patient S1. E. Projection of cells from patient S1, co-infected with hMPV, on the metacell map from

Figure 3A. F. Enrichment analysis of the downregulated genes in hMPV infectedmonocytes. G. Number of hMPVUMIs in cells producing type I IFN or not. P value

was computed by fitting a logistic regression predicting if a cell would produce type I IFN using total host and viral UMIs.
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